top of page

Metallic Biomedical Materials

Updated: Oct 16

Biomedical Technology: Challenges and Solutions for the Safety of Metallic Implants


02/23/2025


Ricardo Luiz Perez Teixeira

Instituto de Engenharias Integradas da Universidade Federal de Itajubá, Itabira, MG, Brazil


Abstract: The utilization of metallic biomedical materials in prostheses and implants is widespread; however, they carry inherent risks to human health. For instance, stainless steel AISI 316L may provoke allergic reactions due to its nickel content. Efforts to mitigate this risk include studying the incorporation of nitrogen into the alloy, although its long-term safety warrants further evaluation. Hydroxyapatite, another implant material, poses a risk when coated on metallic biomaterials, potentially increasing the likelihood of clot and embolism formation. Advancements in biomaterials science have explored the use of carbohydrate-derived protein-resistant biomaterials, which offer biodegradable and functional alternatives. Polyether, synthesized from natural carbohydrates, demonstrates promising protein-resistant properties and can be utilized in various medical devices. Additionally, recent innovations focus on developing long-term hemocompatible materials, especially for cardiopulmonary bypass systems, where blood-biomaterial interactions can lead to thrombus formation and infection. Protein-based biomaterials are also being investigated to improve vascular tissue engineering. These materials serve as scaffolding to create living blood vessel replacements, addressing the complexity of small-diameter applications in blood vessel replacements. Furthermore, there is ongoing research into biomaterials that control cell adhesion and migration, utilizing compounds such as polyethylene glycol (PEG) to enhance biomaterial functionality and reduce protein adsorption. Biomaterials have broad applications in drug-delivery systems, orthopedics, cardiovascular applications, ophthalmics, dental applications, and wound healing. For example, drug-delivery devices with controlled and targeted release mechanisms are rapidly growing, and biomaterials for orthopedics are used to replace and regenerate damaged tissues such as bone and cartilage. In cardiovascular applications, implants can replace damaged heart valves or arteries, and in ophthalmics, polymer-based intraocular lenses are used to replace clouded lenses caused by cataracts. Degradable metallic biomaterials for temporary implants are gaining attention due to their ability to interact with living tissues and facilitate controlled degradation. In vitro cytotoxicity methods are essential for evaluating these materials, assessing their interactions with cells, and their potential effects on the body's tissues. Researchers are developing controlled-release systems and evaluating biocompatibility to ensure the safety and efficacy of new biomaterials. The author of this blog is actively engaged in the field of metallic biomaterials, aiming to enhance the quality of life and foster technological advancement. Particular focus is placed on materials developed within Brazil, such as stainless steel AISI 316L, which holds the potential to propel national development and elevate the standard of human living. Serving as a professor in the Professional Master's Program in Materials Engineering at the Federal University of Itajubá, the author advocates for the involvement of engineering professionals and those in related disciplines in metallic biomaterial research, offering guidance through their academic and scientific-technological endeavors. This work contributes to Brazil's progress and the broader welfare of humanity.


Keywords: AISI 316L, biomaterial, metallic biomedical materials



Articles published on August 6, 2025:


Teixeira, R. L. P. (2025). Electrochemical Stability and Corrosion Resistance of Metallic Implants: An Integrative Review on Surface Engineering and Biocompatibility. Revista De Gestão - RGSA, 19(8), e013035. https://doi.org/10.24857/rgsa.v19n8-010 , https://rgsa.openaccesspublications.org/rgsa/article/view/13035


Teixeira, R. L. P. (2025). Chapter 12 Electrochemical investigations and corrosion stability of the metallic implants. In A. Prasad, M. Sinha & J. Davim (Ed.), High-Performance Metallic Biomaterials: Surface Modification and Coating of Implants (pp. 251-272). De Gruyter. https://doi.org/10.1515/9783111571423-012



References (under development…):


Teixeira, R. L. P., & Silva, P. C. D. (2024). Advancing Metallic Biomaterials for Biomedical Implants: A Comprehensive Integrative Review. Revista De Gestão Social E Ambiental, 18(5), e05255. https://doi.org/10.24857/rgsa.v18n5-036


Teixeira, R. L. P., Damasceno, A. I. P., & Hasegawa, H. L. (2024). Metallic biomaterials and additive manufacturing technologies: Advances and challenges in the production engineering of biomedical implants. In Proceedings of the XXXI Simpósio de Engenharia de Produção (SIMPEP). Bauru, SP: UNESP. Available at https://www.even3.com.br/anais/xxxi_simpep/887450-BIOMATERIAIS-METALICOS-E-TECNOLOGIAS-DE-MANUFATURA-ADITIVA--AVANCOS-E-DESAFIOS-NA-ENGENHARIA-DE-PRODUCAO-DE-IMPLA. Accessed on 24/02/2025, ISSN 1809-7189. https://doi.org/10.29327/xxxi_simpep.887450


Nascimento , M. F. T., & Teixeira, R. L. P. (2024). Influência do jateamento com microesferas de vidro nas propriedades superficiais do aço inoxidável AISI 316L grau ASTM F138. Revista Brasileira De Iniciação Científica, 11, e024043. Recuperado de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/1628


Silva, L. G. F., Teixeira, R. L. P., Siqueira, G. O., & Lacerda, J. C. (2024). Design Thinking for Scientific Initiation in Research on the TRIP Effect in Materials Science. Brazilian Journal of Education, Technology and Society (BRAJETS), 17(3), 1050-1064. https://doi.org/10.14571/brajets.v17.n3.1050-1064 , URL: https://www.brajets.com/index.php/brajets/article/view/1514


Teixeira, R.L.P., de Lacerda, J.C., Florencio, K.C. et al. (2023). TRIP effect produced by cold rolling of austenitic stainless steel AISI 316L. J Mater Sci 58(2), 3334–3345. https://doi.org/10.1007/s10853-023-08235-7


Teixeira, R. L. P., de Lacerda, J. C., Nascimento, M. F. T., Brisola, G. S., & Florencio, K. C. (2023). Analysis of the impact of shot peening with glass microspheres on the fatigue resistance of AISI 316L. In IV Congresso Digital de Nanobiotecnologia e Bioengenharia, Brasília, DF. Anais do IV Congresso Digital de Nanobiotecnologia e Bioengenharia. Embrapa Recursos Genéticos e Biotecnologia. URL: https://www.embrapa.br/busca-de-eventos/-/evento/476237/iv-congresso-digital-de-nanobiotecnologia-e-bioengenharia


Nascimento, Matheus Felipe Teodoro, & TEIXEIRA, Ricardo Luiz Perez. (2023). Estudo do efeito TRIP do aço 316L induzido por conformação mecânica por laminação a frio e por jateamento com microesferas de vidro. Revista dos Trabalhos de Iniciação Científica, 2022. Doi: https://doi.org/10.29327/1307153.1-94


Florêncio, K. C. (2022). Estudo do efeito TRIP produzido pela laminação a frio do aço inoxidável austenítico AISI 316L e avaliação de seu uso como biomaterial (Dissertação de mestrado, Programa de Pós-Graduação em Engenharia de Materiais, Mestrado Profissional). Universidade Federal de Itajubá, Itajubá, Brasil. URL: https://repositorio.unifei.edu.br/jspui/handle/123456789/3457


Teixeira, R. L. P., de Lacerda, J. C., Conceição, I. C., da Silva, S. N., Siqueira, G. O., & Moura Filho, F. (2021). The Effects of Niobium on the Bioactivity of Ni-Ti-Al-Nb Shape Memory Alloys. Archives of Metallurgy and Materials, 437-442. URL: https://www.imim.pl/files/archiwum/Vol2_2021/12.pdf


Marques, A. V. M., Carmo, K. M. D., Lage, W. C., Teixeira, R. L. P., Lacerda, J. C. D., Teixeira, C. H. S. B., & Shitsuka, R. (2020). Avaliação do efeito de deformação plástica na dureza, microestrutura e propriedades magnéticas de um aço inoxidável AISI 316L. Matéria (Rio de Janeiro), 25. URL: https://www.scielo.br/j/rmat/a/BMPfCmgcbyW97vTNMLD7GJG/?lang=pt


Conceição, I. C., & Teixeira, R. L. P. (2018). Produção de ligas de memória de forma com elemento ligante de nióbio. In Anais do III Congresso de Pesquisa, Extensão e Ensino da Unifei-Itabira [Proceedings of the 3rd Congress of Research, Extension, and Teaching of Unifei-Itabira], Universidade Federal de Itajubá, Itabira, MG.


Conceição, I. C., Dias, L. C. M., Filho, F. M., Teixeira, R. L. P., de Lacerda, J. C., & Silva, S. N. (2018). Produção de ligas de memória de forma com elemento ligante de nióbio. In 23 Congresso Brasileiro de Engenharia e Ciência dos Materiais – CBECiMat.

Conceicao, I. C., Da Silva, S. N., & Teixeira, R. L. P. (2018). Análise da bioatividade da liga de Ni-Ti-Al e elemento ligante de nióbio produzida por fundição a plasma. In Anais do XX Congresso dos Estudantes de Ciência e Engenharia de Materiais do MERCOSUL [Proceedings of the 20th Congress of Materials Science and Engineering Students of MERCOSUR], São Carlos, SP, Brazil. Universidade Federal de São Carlos (UFSCar - Campus São Carlos) and University of São Paulo (USP – Campus I, São Carlos). (Vol. 1, pp. 1-2).


Conceição, I. C., Dias, L. C. M., Fernandes, A. M., Teixeira, R. L. P., Moura Filho, F., Hasegawa, H. L., & de Lacerda, J. C. (2017). PRODUÇÃO DE LIGAS DE MEMÓRIA DE FORMA DE Ni-Ti-Al COM ELEMENTO LIGANTE DE NIÓBIO-RESULTADOS PARCIAIS. The Journal of Engineering and Exact Sciences, 3(8), 1038-1050. URL: https://periodicos.ufv.br/jcec/article/view/2399


Conceição, I. C., & Teixeira, R. L. P. (2017). Produção de ligas de memória de forma de Ni-Ti-Al com elemento ligante de nióbio. In Anais do II Congresso de Pesquisa, Extensão e Ensino da Unifei Campus de Itabira (p. 1-2). Itabira-MG: UNIFEI. ISBN: 978-85-69806-04-2. Recuperado de https://cpee.unifei.edu.br/anaisiicpeeisbn.pdf


​Conceicao, I. C., Dias, L. C. M., Teixeira, R. L. P., Lacerda, J. C., Hasegawa, H. L., & Moura Filho, F. (2017). Produção de Ligas de Memória de Forma com Elemento Ligante de Nióbio. In Anais do XIX Congresso dos Estudantes de Ciência e Engenharia de Materiais do MERCOSUL (p. 1-3). Belo Horizonte, MG: Portal de Administração de Conferências, Centro Federal de Educação Tecnológica de Minas Gerais.


Teixeira, R. L. P., Godoy, G. C. D. D., & Pereira, M. D. M. (2004). Calcium phosphate formation on alkali-treated titanium alloy and stainless steel. Materials Research, 7, 299-303. URL: https://doi.org/10.1590/S1516-14392004000200013


Teixeira, R. L. P. (2003). Recobrimentos de fosfato de cálcio obtidos pelo método biomimético sobre os substratos aço inoxidável e liga de titânio (Dissertação de mestrado). Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil. https://ppgem.eng.ufmg.br/diss_detalhes.php?aluno=546


Teixeira, R. L. P., Pereira, M. M., & Godoy, G. C. D. (2003). Surface Texture Evaluation of Alkaline Treated Stainless Steel and Titanium Alloy by Microscopy and Profilometry. In XIX Congresso da Sociedade Brasileira de Microscopia e Microanálise, Caxambú, Brazil, Acta Microscopica Supplement C, September 2003 (Vol. 12, pp. 43-44). Caracas: Instituto Venezolano de Investigaciones Científicas (IVIC).


Teixeira, R. L. P., & Pereira, M. M. (2002). Calcium Phosphate Formation on Alkali-Treated Titanium Alloy and Stainless Steel. In XV Congresso Brasileiro de Engenharia e Ciência dos Materiais, Natal, Brazil, 2002.



ree

 
 
 

Comments


Visitor counter

bottom of page